1.
Casella G, Berger RL. Statistical inference. Second edition. Vol. The Duxbury advanced series in statistics and decision sciences. Delhi: Cengage Learning; 2017.
2.
Abu-Mostafa YS, Magdon-Ismail M, Lin HT. Learning from data: a short course. [United States]: AMLBook.com; 2012.
3.
Grimmett G, Stirzaker D. Probability and random processes. Third edition. Oxford: Oxford University Press; 2001.
4.
Mood AM, Graybill FA, Boes DC. Introduction to the theory of statistics. Third edition. Vol. McGraw-Hill series in probability and statistics. [Auckland?]: McGraw-Hill Book Company; 1974.
5.
Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. Vol. Springer series in statistics. New York: Springer; 2009.
6.
Murphy KP. Machine learning: a probabilistic perspective. Vol. Adaptive computation and machine learning. Cambridge, Mass: MIT Press; 2012.
7.
Barber D. Bayesian reasoning and machine learning. Cambridge: Cambridge University Press; 2012.
8.
Bishop CM. Pattern recognition and machine learning. Vol. Information science and statistics. Oxford: Springer; 2006.
9.
Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction : with 200 full-color illustrations. Vol. Springer series in statistics. New York: Springer; 2001.
10.
Goodfellow I, Bengio Y, Courville A. Deep learning. Vol. Adaptive computation and machine learning. Cambridge, Massachusetts: The MIT Press; 2016.
11.
Raschka S. Python machine learning: unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics. Vol. Community experience distilled. Birmingham: Packt Publishing; 2015.
12.
McKinney W. Python for data analysis [Internet]. Farnham: O’Reilly; 2013. Available from: http://proxy.library.lincoln.ac.uk/login?url=http://www.dawsonera.com/depp/reader/protected/external/AbstractView/S9781449323622
13.
Kevin Sheppard - Lecture Notes [Internet]. Available from: https://www.kevinsheppard.com/Main_Page
14.
Harrington P. Machine learning in action. Shelter Island, N.Y.: Manning Publications; 2012.
15.
Source Code for the book: Machine Learning in Action published by Manning [Internet]. Available from: https://github.com/pbharrin/machinelearninginaction
16.
Zumel N, Mount J. Practical data science with R. Shelter Island, New York: Manning; 2014.
17.
Nolan DA, Lang DT, editors. Data science in R: a case studies approach to computational reasoning and problem solving. Vol. Chapman&Hall/CRC the R series. Boca Raton, FL: Chapman & Hall/CRC; 2015.
18.
Kabacoff R. R in action: data analysis and graphics with R. Second edition. Shelter Island, NY: Manning; 2015.
19.
Wickham H. ggplot2: elegant graphics for data analysis [Internet]. Vol. Use R! New York: Springer; 2009. Available from: https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9780387981413
20.
Wickham H. Advanced R. Vol. Chapman&Hall/CRC the R series. Boca Raton, FL: Chapman & Hall/CRC; 2014.
21.
Sarkar D. Lattice: multivariate data visualization with R [Internet]. Vol. Use R! New York: Springer; 2008. Available from: https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9780387759692
22.
Lantz B. Machine learning with R: learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications [Internet]. Birmingham: Packt Publishing Limited; 2013. Available from: https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9781782162155
23.
Wickham H. R packages. Sebastopol, California: O’Reilly Media; 2015.
24.
Wickham H. Advanced R. Vol. Chapman&Hall/CRC the R series. Boca Raton, FL: Chapman & Hall/CRC; 2014.
25.
Peng R. R Programming for Data Science. Morrisville: Lulu.com; 2016.
26.
Martinez WL, Martinez AR. Computational statistics handbook with MATLAB. Third edition. Vol. Chapman&Hall/CRC computer science and data analysis series. Boca Raton: Chapman & Hall/CRC; 2016.
27.
Kiusalaas J. Numerical methods in engineering with MATLAB. Third edition. Cambridge: Cambridge University Press; 2016.
28.
Karau H, Konwinski A, Wendell P, Zaharia M. Learning Spark: lightning-fast big data analytics [Internet]. Sebastopol, CA: O’Reilly; 2013. Available from: https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9781449359065