[1]
G. Casella and R. L. Berger, Statistical inference, Second edition., vol. The Duxbury advanced series in statistics and decision sciences. Delhi: Cengage Learning, 2017.
[2]
Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from data: a short course. [United States]: AMLBook.com, 2012.
[3]
G. Grimmett and D. Stirzaker, Probability and random processes, Third edition. Oxford: Oxford University Press, 2001.
[4]
A. M. Mood, F. A. Graybill, and D. C. Boes, Introduction to the theory of statistics, Third edition., vol. McGraw-Hill series in probability and statistics. [Auckland?]: McGraw-Hill Book Company, 1974.
[5]
T. Hastie, R. Tibshirani, and J. H. Friedman, The elements of statistical learning: data mining, inference, and prediction, 2nd ed., vol. Springer series in statistics. New York: Springer, 2009.
[6]
K. P. Murphy, Machine learning: a probabilistic perspective, vol. Adaptive computation and machine learning. Cambridge, Mass: MIT Press, 2012.
[7]
D. Barber, Bayesian reasoning and machine learning. Cambridge: Cambridge University Press, 2012.
[8]
C. M. Bishop, Pattern recognition and machine learning, vol. Information science and statistics. Oxford: Springer, 2006.
[9]
T. Hastie, R. Tibshirani, and J. H. Friedman, The elements of statistical learning: data mining, inference, and prediction : with 200 full-color illustrations, vol. Springer series in statistics. New York: Springer, 2001.
[10]
I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, vol. Adaptive computation and machine learning. Cambridge, Massachusetts: The MIT Press, 2016.
[11]
S. Raschka, Python machine learning: unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics, vol. Community experience distilled. Birmingham: Packt Publishing, 2015.
[12]
W. McKinney, Python for data analysis. Farnham: O’Reilly, 2013 [Online]. Available: http://proxy.library.lincoln.ac.uk/login?url=http://www.dawsonera.com/depp/reader/protected/external/AbstractView/S9781449323622
[13]
‘Kevin Sheppard - Lecture Notes’. [Online]. Available: https://www.kevinsheppard.com/Main_Page
[14]
P. Harrington, Machine learning in action. Shelter Island, N.Y.: Manning Publications, 2012.
[15]
‘Source Code for the book: Machine Learning in Action published by Manning’. [Online]. Available: https://github.com/pbharrin/machinelearninginaction
[16]
N. Zumel and J. Mount, Practical data science with R. Shelter Island, New York: Manning, 2014.
[17]
D. A. Nolan and D. T. Lang, Eds., Data science in R: a case studies approach to computational reasoning and problem solving, vol. Chapman&Hall/CRC the R series. Boca Raton, FL: Chapman & Hall/CRC, 2015.
[18]
R. Kabacoff, R in action: data analysis and graphics with R, Second edition. Shelter Island, NY: Manning, 2015.
[19]
H. Wickham, ggplot2: elegant graphics for data analysis, vol. Use R! New York: Springer, 2009 [Online]. Available: https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9780387981413
[20]
H. Wickham, Advanced R, vol. Chapman&Hall/CRC the R series. Boca Raton, FL: Chapman & Hall/CRC, 2014.
[21]
D. Sarkar, Lattice: multivariate data visualization with R, vol. Use R! New York: Springer, 2008 [Online]. Available: https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9780387759692
[22]
B. Lantz, Machine learning with R: learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications. Birmingham: Packt Publishing Limited, 2013 [Online]. Available: https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9781782162155
[23]
H. Wickham, R packages. Sebastopol, California: O’Reilly Media, 2015.
[24]
H. Wickham, Advanced R, vol. Chapman&Hall/CRC the R series. Boca Raton, FL: Chapman & Hall/CRC, 2014.
[25]
R. Peng, R Programming for Data Science. Morrisville: Lulu.com, 2016.
[26]
W. L. Martinez and A. R. Martinez, Computational statistics handbook with MATLAB, Third edition., vol. Chapman&Hall/CRC computer science and data analysis series. Boca Raton: Chapman & Hall/CRC, 2016.
[27]
J. Kiusalaas, Numerical methods in engineering with MATLAB, Third edition. Cambridge: Cambridge University Press, 2016.
[28]
H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning Spark: lightning-fast big data analytics. Sebastopol, CA: O’Reilly, 2013 [Online]. Available: https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9781449359065