1.
Casella, G. & Berger, R. L. Statistical inference. vol. The Duxbury advanced series in statistics and decision sciences (Cengage Learning, 2017).
2.
Abu-Mostafa, Y. S., Magdon-Ismail, M. & Lin, H.-T. Learning from data: a short course. (AMLBook.com, 2012).
3.
Grimmett, G. & Stirzaker, D. Probability and random processes. (Oxford University Press, 2001).
4.
Mood, A. M., Graybill, F. A. & Boes, D. C. Introduction to the theory of statistics. vol. McGraw-Hill series in probability and statistics (McGraw-Hill Book Company, 1974).
5.
Hastie, T., Tibshirani, R. & Friedman, J. H. The elements of statistical learning: data mining, inference, and prediction. vol. Springer series in statistics (Springer, 2009).
6.
Murphy, K. P. Machine learning: a probabilistic perspective. vol. Adaptive computation and machine learning (MIT Press, 2012).
7.
Barber, D. Bayesian reasoning and machine learning. (Cambridge University Press, 2012).
8.
Bishop, C. M. Pattern recognition and machine learning. vol. Information science and statistics (Springer, 2006).
9.
Hastie, T., Tibshirani, R. & Friedman, J. H. The elements of statistical learning: data mining, inference, and prediction : with 200 full-color illustrations. vol. Springer series in statistics (Springer, 2001).
10.
Goodfellow, I., Bengio, Y. & Courville, A. Deep learning. vol. Adaptive computation and machine learning (The MIT Press, 2016).
11.
Raschka, S. Python machine learning: unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics. vol. Community experience distilled (Packt Publishing, 2015).
12.
McKinney, W. Python for data analysis. (O’Reilly, 2013).
13.
Kevin Sheppard - Lecture Notes. https://www.kevinsheppard.com/Main_Page.
14.
Harrington, P. Machine learning in action. (Manning Publications, 2012).
15.
Source Code for the book: Machine Learning in Action published by Manning. https://github.com/pbharrin/machinelearninginaction.
16.
Zumel, N. & Mount, J. Practical data science with R. (Manning, 2014).
17.
Data science in R: a case studies approach to computational reasoning and problem solving. vol. Chapman&Hall/CRC the R series (Chapman & Hall/CRC, 2015).
18.
Kabacoff, R. R in action: data analysis and graphics with R. (Manning, 2015).
19.
Wickham, H. ggplot2: elegant graphics for data analysis. vol. Use R! (Springer, 2009).
20.
Wickham, H. Advanced R. vol. Chapman&Hall/CRC the R series (Chapman & Hall/CRC, 2014).
21.
Sarkar, D. Lattice: multivariate data visualization with R. vol. Use R! (Springer, 2008).
22.
Lantz, B. Machine learning with R: learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications. (Packt Publishing Limited, 2013).
23.
Wickham, H. R packages. (O’Reilly Media, 2015).
24.
Wickham, H. Advanced R. vol. Chapman&Hall/CRC the R series (Chapman & Hall/CRC, 2014).
25.
Peng, R. R Programming for Data Science. (Lulu.com, 2016).
26.
Martinez, W. L. & Martinez, A. R. Computational statistics handbook with MATLAB. vol. Chapman&Hall/CRC computer science and data analysis series (Chapman & Hall/CRC, 2016).
27.
Kiusalaas, J. Numerical methods in engineering with MATLAB. (Cambridge University Press, 2016).
28.
Karau, H., Konwinski, A., Wendell, P. & Zaharia, M. Learning Spark: lightning-fast big data analytics. (O’Reilly, 2013).