Abu-Mostafa, Yaser S., Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning from Data: A Short Course. [United States]: AMLBook.com, 2012. Print.
Barber, David. Bayesian Reasoning and Machine Learning. Cambridge: Cambridge University Press, 2012. Print.
Bishop, C. M. Pattern Recognition and Machine Learning. Information science and statistics. Oxford: Springer, 2006. Print.
Casella, George, and Roger L. Berger. Statistical Inference. Second edition. The Duxbury advanced series in statistics and decision sciences. Delhi: Cengage Learning, 2017. Print.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep Learning. Adaptive computation and machine learning. Cambridge, Massachusetts: The MIT Press, 2016. Print.
Grimmett, Geoffrey, and David Stirzaker. Probability and Random Processes. Third edition. Oxford: Oxford University Press, 2001. Print.
Harrington, Peter. Machine Learning in Action. Shelter Island, N.Y.: Manning Publications, 2012. Print.
Hastie, Trevor, Robert Tibshirani, and J. H. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. Springer series in statistics. New York: Springer, 2009. Print.
---. The Elements of Statistical Learning: Data Mining, Inference, and Prediction : With 200 Full-Color Illustrations. Springer series in statistics. New York: Springer, 2001. Print.
Kabacoff, Robert. R in Action: Data Analysis and Graphics with R. Second edition. Shelter Island, NY: Manning, 2015. Print.
Karau, Holden et al. Learning Spark: Lightning-Fast Big Data Analytics. Sebastopol, CA: O’Reilly, 2013. Web. <https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9781449359065>.
‘Kevin Sheppard - Lecture Notes’. N.p., n.d. Web. <https://www.kevinsheppard.com/Main_Page>.
Kiusalaas, Jaan. Numerical Methods in Engineering with MATLAB. Third edition. Cambridge: Cambridge University Press, 2016. Print.
Lantz, Brett. Machine Learning with R: Learn How to Use R to Apply Powerful Machine Learning Methods and Gain an Insight into Real-World Applications. Birmingham: Packt Publishing Limited, 2013. Web. <https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9781782162155>.
Martinez, Wendy L., and Angel R. Martinez. Computational Statistics Handbook with MATLAB. Third edition. Chapman&Hall/CRC computer science and data analysis series. Boca Raton: Chapman & Hall/CRC, 2016. Print.
McKinney, Wes. Python for Data Analysis. Farnham: O’Reilly, 2013. Web. <http://proxy.library.lincoln.ac.uk/login?url=http://www.dawsonera.com/depp/reader/protected/external/AbstractView/S9781449323622>.
Mood, Alexander McFarlane, Franklin A. Graybill, and Duane C. Boes. Introduction to the Theory of Statistics. Third edition. McGraw-Hill series in probability and statistics. [Auckland?]: McGraw-Hill Book Company, 1974. Print.
Murphy, Kevin P. Machine Learning: A Probabilistic Perspective. Adaptive computation and machine learning. Cambridge, Mass: MIT Press, 2012. Print.
Nolan, Deborah Ann, and Duncan Temple Lang, eds. Data Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving. Chapman&Hall/CRC the R series. Boca Raton, FL: Chapman & Hall/CRC, 2015. Print.
Peng, Roger. R Programming for Data Science. Morrisville: Lulu.com, 2016. Print.
Raschka, Sebastian. Python Machine Learning: Unlock Deeper Insights into Machine Learning with This Vital Guide to Cutting-Edge Predictive Analytics. Community experience distilled. Birmingham: Packt Publishing, 2015. Print.
Sarkar, Deepayan. Lattice: Multivariate Data Visualization with R. Use R! New York: Springer, 2008. Web. <https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9780387759692>.
‘Source Code for the Book: Machine Learning in Action Published by Manning’. N.p., n.d. Web. <https://github.com/pbharrin/machinelearninginaction>.
Wickham, Hadley. Advanced R. Chapman&Hall/CRC the R series. Boca Raton, FL: Chapman & Hall/CRC, 2014. Print.
---. Advanced R. Chapman&Hall/CRC the R series. Boca Raton, FL: Chapman & Hall/CRC, 2014. Print.
---. Ggplot2: Elegant Graphics for Data Analysis. Use R! New York: Springer, 2009. Web. <https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9780387981413>.
---. R Packages. Sebastopol, California: O’Reilly Media, 2015. Print.
Zumel, Nina, and John Mount. Practical Data Science with R. Shelter Island, New York: Manning, 2014. Print.