1.
Casella G, Berger RL. Statistical Inference. Vol The Duxbury advanced series in statistics and decision sciences. Second edition. Cengage Learning; 2017.
2.
Abu-Mostafa YS, Magdon-Ismail M, Lin HT. Learning from Data: A Short Course. AMLBook.com; 2012.
3.
Grimmett G, Stirzaker D. Probability and Random Processes. Third edition. Oxford University Press; 2001.
4.
Mood AM, Graybill FA, Boes DC. Introduction to the Theory of Statistics. Vol McGraw-Hill series in probability and statistics. Third edition. McGraw-Hill Book Company; 1974.
5.
Hastie T, Tibshirani R, Friedman JH. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Vol Springer series in statistics. 2nd ed. Springer; 2009.
6.
Murphy KP. Machine Learning: A Probabilistic Perspective. Vol Adaptive computation and machine learning. MIT Press; 2012.
7.
Barber D. Bayesian Reasoning and Machine Learning. Cambridge University Press; 2012.
8.
Bishop CM. Pattern Recognition and Machine Learning. Vol Information science and statistics. Springer; 2006.
9.
Hastie T, Tibshirani R, Friedman JH. The Elements of Statistical Learning: Data Mining, Inference, and Prediction : With 200 Full-Color Illustrations. Vol Springer series in statistics. Springer; 2001.
10.
Goodfellow I, Bengio Y, Courville A. Deep Learning. Vol Adaptive computation and machine learning. The MIT Press; 2016.
11.
Raschka S. Python Machine Learning: Unlock Deeper Insights into Machine Learning with This Vital Guide to Cutting-Edge Predictive Analytics. Vol Community experience distilled. Packt Publishing; 2015.
12.
McKinney W. Python for Data Analysis. O’Reilly; 2013. http://proxy.library.lincoln.ac.uk/login?url=http://www.dawsonera.com/depp/reader/protected/external/AbstractView/S9781449323622
13.
Kevin Sheppard - Lecture Notes. https://www.kevinsheppard.com/Main_Page
14.
Harrington P. Machine Learning in Action. Manning Publications; 2012.
15.
Source Code for the book: Machine Learning in Action published by Manning. https://github.com/pbharrin/machinelearninginaction
16.
Zumel N, Mount J. Practical Data Science with R. Manning; 2014.
17.
Nolan DA, Lang DT, eds. Data Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving. Vol Chapman&Hall/CRC the R series. Chapman & Hall/CRC; 2015.
18.
Kabacoff R. R in Action: Data Analysis and Graphics with R. Second edition. Manning; 2015.
19.
Wickham H. Ggplot2: Elegant Graphics for Data Analysis. Vol Use R! Springer; 2009. https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9780387981413
20.
Wickham H. Advanced R. Vol Chapman&Hall/CRC the R series. Chapman & Hall/CRC; 2014.
21.
Sarkar D. Lattice: Multivariate Data Visualization with R. Vol Use R! Springer; 2008. https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9780387759692
22.
Lantz B. Machine Learning with R: Learn How to Use R to Apply Powerful Machine Learning Methods and Gain an Insight into Real-World Applications. Packt Publishing Limited; 2013. https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9781782162155
23.
Wickham H. R Packages. O’Reilly Media; 2015.
24.
Wickham H. Advanced R. Vol Chapman&Hall/CRC the R series. Chapman & Hall/CRC; 2014.
25.
Peng R. R Programming for Data Science. Lulu.com; 2016.
26.
Martinez WL, Martinez AR. Computational Statistics Handbook with MATLAB. Vol Chapman&Hall/CRC computer science and data analysis series. Third edition. Chapman & Hall/CRC; 2016.
27.
Kiusalaas J. Numerical Methods in Engineering with MATLAB. Third edition. Cambridge University Press; 2016.
28.
Karau H, Konwinski A, Wendell P, Zaharia M. Learning Spark: Lightning-Fast Big Data Analytics. O’Reilly; 2013. https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9781449359065