Abu-Mostafa, Y. S., Magdon-Ismail, M., & Lin, H.-T. (2012). Learning from data: a short course. AMLBook.com.
Barber, D. (2012). Bayesian reasoning and machine learning. Cambridge University Press.
Bishop, C. M. (2006). Pattern recognition and machine learning: Vol. Information science and statistics. Springer.
Casella, G., & Berger, R. L. (2017). Statistical inference: Vol. The Duxbury advanced series in statistics and decision sciences (Second edition). Cengage Learning.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning: Vol. Adaptive computation and machine learning. The MIT Press.
Grimmett, G., & Stirzaker, D. (2001). Probability and random processes (Third edition). Oxford University Press.
Harrington, P. (2012). Machine learning in action. Manning Publications.
Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical learning: data mining, inference, and prediction : with 200 full-color illustrations: Vol. Springer series in statistics. Springer.
Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction: Vol. Springer series in statistics (2nd ed). Springer.
Kabacoff, R. (2015). R in action: data analysis and graphics with R (Second edition). Manning.
Karau, H., Konwinski, A., Wendell, P., & Zaharia, M. (2013). Learning Spark: lightning-fast big data analytics [Ebook]. O’Reilly. https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9781449359065
Kevin Sheppard - Lecture Notes. (n.d.). https://www.kevinsheppard.com/Main_Page
Kiusalaas, J. (2016). Numerical methods in engineering with MATLAB (Third edition). Cambridge University Press.
Lantz, B. (2013). Machine learning with R: learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications [Ebook]. Packt Publishing Limited. https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9781782162155
Martinez, W. L., & Martinez, A. R. (2016). Computational statistics handbook with MATLAB: Vol. Chapman&Hall/CRC computer science and data analysis series (Third edition). Chapman & Hall/CRC.
McKinney, W. (2013). Python for data analysis [Ebook]. O’Reilly. http://proxy.library.lincoln.ac.uk/login?url=http://www.dawsonera.com/depp/reader/protected/external/AbstractView/S9781449323622
Mood, A. M., Graybill, F. A., & Boes, D. C. (1974). Introduction to the theory of statistics: Vol. McGraw-Hill series in probability and statistics (Third edition). McGraw-Hill Book Company.
Murphy, K. P. (2012). Machine learning: a probabilistic perspective: Vol. Adaptive computation and machine learning. MIT Press.
Nolan, D. A., & Lang, D. T. (Eds.). (2015). Data science in R: a case studies approach to computational reasoning and problem solving: Vol. Chapman&Hall/CRC the R series. Chapman & Hall/CRC.
Peng, R. (2016). R Programming for Data Science. Lulu.com.
Raschka, S. (2015). Python machine learning: unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics: Vol. Community experience distilled [Ebook]. Packt Publishing.
Sarkar, D. (2008). Lattice: multivariate data visualization with R: Vol. Use R! [Ebook]. Springer. https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9780387759692
Source Code for the book: Machine Learning in Action published by Manning. (n.d.). https://github.com/pbharrin/machinelearninginaction
Wickham, H. (2009). ggplot2: elegant graphics for data analysis: Vol. Use R! [Ebook]. Springer. https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9780387981413
Wickham, H. (2014a). Advanced R: Vol. Chapman&Hall/CRC the R series. Chapman & Hall/CRC.
Wickham, H. (2014b). Advanced R: Vol. Chapman&Hall/CRC the R series. Chapman & Hall/CRC.
Wickham, H. (2015). R packages [Ebook]. O’Reilly Media.
Zumel, N., & Mount, J. (2014). Practical data science with R. Manning.