Alpaydin, Ethem. 2014. Introduction to Machine Learning. Third edition. Vol. Adaptive computation and machine learning. Cambridge, Massachusetts: The MIT Press.
Bishop, C. M. 2006. Pattern Recognition and Machine Learning. Vol. Information science and statistics. Oxford: Springer.
Chollet, François. 2018. Deep Learning with Python. Shelter Island, NY: Manning.
‘Deep Learning’. n.d. http://www.deeplearningbook.org/.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Vol. Adaptive computation and machine learning. Cambridge, Massachusetts: The MIT Press. https://ebookcentral-proquest-com.proxy.library.lincoln.ac.uk/lib/ulinc/detail.action?docID=6287197.
‘IEEE Transactions on Neural Networks and Learning Systems’. n.d. http://ieeexplore.ieee.org.proxy.library.lincoln.ac.uk/xpl/RecentIssue.jsp?punumber=5962385.
‘IEEE Transactions on Pattern Analysis and Machine Intelligenc’. n.d. http://ieeexplore.ieee.org.proxy.library.lincoln.ac.uk/xpl/RecentIssue.jsp?punumber=34.
Marsland, Stephen. 2014. Machine Learning: An Algorithmic Perspective. Second edition. Vol. Chapman&Hall/CRC machine learning&pattern recognition series. Boca Raton, FL: Chapman & Hall/CRC.
Mitchell, Tom M. 1997. Machine Learning. International ed. Vol. McGraw-Hill series in computer science. new York: McGraw-Hill.
Rogers, Simon, and Mark Girolami. 2017. A First Course in Machine Learning. Book ebook. Second edition. Boca Raton: CRC Press. https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9781315382159.
Shukla, Nishant, and Kenneth Fricklas. 2018. Machine Learning with TensorFlow. Shelter Island, NY: Manning Publications.
Sutton, Richard S. and Barto, Andrew G. 1998. Reinforcement Learning: An Introduction. Vol. Adaptive computation and machine learning. Cambridge, Mass: MIT Press.
Taylor, K. 2017. Deep Learning Using MATLAB: Neural Network Applications. [Createspace Independent Publishing Platform].
‘The Journal of Machine Learning Research (JMLR)’. n.d. https://go.openathens.net/redirector/lincoln.ac.uk?url=https%3A%2F%2Fdl.acm.org%2Fjournal%2Fjmlr.