Alpaydin, E. (2014). Introduction to machine learning: Vol. Adaptive computation and machine learning (Third edition). The MIT Press.
Bishop, C. M. (2006). Pattern recognition and machine learning: Vol. Information science and statistics. Springer.
Chollet, F. (2018). Deep learning with Python. Manning.
Deep Learning. (n.d.). http://www.deeplearningbook.org/
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning: Vol. Adaptive computation and machine learning. The MIT Press. https://ebookcentral-proquest-com.proxy.library.lincoln.ac.uk/lib/ulinc/detail.action?docID=6287197
IEEE Transactions on Neural Networks and Learning Systems. (n.d.). http://ieeexplore.ieee.org.proxy.library.lincoln.ac.uk/xpl/RecentIssue.jsp?punumber=5962385
IEEE Transactions on Pattern Analysis and Machine Intelligenc. (n.d.). http://ieeexplore.ieee.org.proxy.library.lincoln.ac.uk/xpl/RecentIssue.jsp?punumber=34
Marsland, S. (2014). Machine learning: an algorithmic perspective: Vol. Chapman&Hall/CRC machine learning&pattern recognition series (Second edition). Chapman & Hall/CRC.
Mitchell, Tom M. (1997). Machine learning: Vol. McGraw-Hill series in computer science (International ed). McGraw-Hill.
Rogers, S., & Girolami, M. (2017). A first course in machine learning (Second edition) [Book ebook]. CRC Press. https://www.vlebooks.com/vleweb/product/openreader?id=UniLincoln&isbn=9781315382159
Shukla, N., & Fricklas, K. (2018). Machine learning with TensorFlow. Manning Publications.
Sutton, Richard S. & Barto, Andrew G. (1998). Reinforcement learning: an introduction: Vol. Adaptive computation and machine learning. MIT Press.
Taylor, K. (2017). Deep learning using MATLAB: neural network applications. [Createspace Independent Publishing Platform].
The Journal of Machine Learning Research (JMLR). (n.d.). https://go.openathens.net/redirector/lincoln.ac.uk?url=https%3A%2F%2Fdl.acm.org%2Fjournal%2Fjmlr